Top-pair production at Hadron Colliders:

newest developments

Alexander Mitov

Yang Institute for Theoretical Physics SUNY Stony Brook

Work with Michael Czakon arXiv:0812.0353 arXiv:0811.4119 and in progress...

Current status

The state of the art is NLO QCD corrections.

Original results derived long ago (20 years):

New results (2 months ago):

Nason, Dawson, Ellis (1988-90) Beenakker, Kuijf, van Neerven, Smith (1989) Beenakker, van Neerven, Meng, Schuler, Smith (91) Mangano, Nason, Ridolfi (1992)

M. Czakon, A.M. (2008)

- Various observables:
 - a) Differential:
 single particle inclusive,
 pair-invariant mass distribution,
 etc.
 - b) Fully inclusive (until two months ago numerical; now analytic)
- Relevance of the differential vs the total cross section:
 For not too strong cuts, the NLO effect is on normalization, not shapes!

Current status

Second source: NLL soft gluon (threshold) resummation.

The only source of new information in top production in the last 10 years

- Various observables:
 - a) Differential:
 single particle inclusive,
 pair-invariant mass distribution,
 etc.

Developed: Sterman et al mid-90's Applied: Kidonakis, Laenen, Moch, Vogt

b) Fully inclusive

Developed (NLL): Bonciani, Catani, Mangano, Nason '98 Applied: Cacciari et al, Moch Uwer, Czakon AM

The relation between the two pictures is still unclear!

Top pair production ... Alexander Mitov CTEQ, 18 Feb 2009

σ_{TOT} : highlights

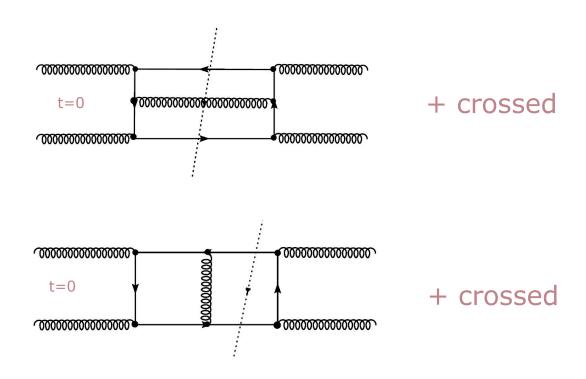
From: Cacciari et al '08

$$\sigma_{t\bar{t}}^{\text{NLO}}(\text{LHC}, m_t = 171 \text{ GeV}, \text{CTEQ6.5}) = 875 \begin{array}{l} +102(11.6\%) \\ -100(11.5\%) \end{array} \text{ (scales)} \begin{array}{l} +30(3.4\%) \\ -29(3.3\%) \end{array} \text{ (PDFs)} \quad \text{pb} \\ \sigma_{t\bar{t}}^{\text{LO}}(\text{LHC}, m_t = 171 \text{ GeV}, \text{CTEQ6.5}) = 583 \begin{array}{l} +165(28.2\%) \\ -120(20.7\%) \end{array} \text{ (scales)} \begin{array}{l} +20(3.4\%) \\ -19(3.3\%) \end{array} \text{ (PDFs)} \quad \text{pb} \\ \sigma_{t\bar{t}}^{\text{NLO+NLL}}(\text{LHC}, m_t = 171 \text{ GeV}, \text{CTEQ6.5}) = 908 \begin{array}{l} +82(9.0\%) \\ -85(9.3\%) \end{array} \text{ (scales)} \begin{array}{l} +30(3.3\%) \\ -29(3.2\%) \end{array} \text{ (PDFs)} \quad \text{pb} \\ \end{array}$$

Effect on central values:

- ➤ FO NLO / FO LO: 50%
- ➤ NLL / FO NLO: 4%
- ➤ New NLO effects / FO NLO: 1-1.5% Czakon, AM
- ➤ Beyond NLL effects / FO NLO: 0.8% Moch, Uwer

Important: No genuine NNLO term is known (could easily give 5%)!


$$\sigma_{t\bar{t}}^{\rm NLO}({\rm LHC}, m_t = 171~{\rm GeV, MRST2006nnlo}) = 927 \, {}^{+109(11.7\%)}_{-107(11.5\%)} \, ({\rm scales}) \, {}^{+11(1.2\%)}_{-12(1.3\%)} \, ({\rm PDFs}) \, {\rm pb}$$

$$\sigma_{t\bar{t}}^{\rm LO}({\rm LHC}, m_t = 171~{\rm GeV, MRST2006nnlo}) = 616 \, {}^{+172(27.9\%)}_{-126(20.5\%)} \, ({\rm scales}) \, {}^{+7.3(1.2\%)}_{-7.8(1.3\%)} \, ({\rm PDFs}) \, {\rm pb}$$

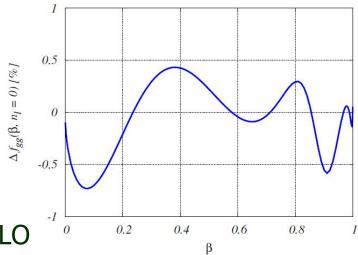
$$\sigma_{t\bar{t}}^{\rm NLO+NLL}({\rm LHC}, m_t = 171~{\rm GeV, MRST2006nnlo}) = 961 \, {}^{+89(9.2\%)}_{-91(9.4\%)} \, ({\rm scales}) \, {}^{+11(1.1\%)}_{-12(1.2\%)} \, ({\rm PDFs}) \, {\rm pb}$$

How complicated is the NLO?

Here are few sample diagrams at NLO:

Note: these are 2 loop (cut) boxes with masses. Not studied before.

Top pair production ... Alexander Mitov CTEQ, 18 Feb 2009


Main details of the new exact NLO calculation

- ***** For 20 years σ_{TOT} was known as a numerically derived fit
- Newly calculated analytical results (new techniques):
 - The whole problem is mapped into 37 masters (real+virtual)
 - * We find that the cross-section develops new unphysical singularities!
 - Appearance of elliptic functions,
 - ❖ We confirm the high numerical accuracy of the earlier FO results (< 1%)</p>

NOTE: the qq-bar reaction is too simple at NLO!

Only 4 massless masters appear ©

gg represents the true complexity at NLO

Comparing our new analytic result with earlier numerical ones

Extraction of the constant in the threshold limit:

$$C_{A}\left(\frac{21N^{2}-50}{N^{2}-2}-\frac{\left(17N^{2}-40\right)\pi^{2}}{24\left(N^{2}-2\right)}+\frac{\left(N^{2}-4\right)\log 2}{N^{2}-2}-2\log^{2}2\right)+C_{F}\left(-5+\frac{\pi^{2}}{4}\right)$$

$$=\frac{1111}{21}-\frac{283\pi^{2}}{168}+\frac{15\log 2}{7}-6\log^{2}2\overset{2}{\rightleftharpoons}34.88\,,$$
Czakon, AM '08

X-section better than 1%. But the constant in gg is 7% different.

Turns out, it is all consistent ...

Hagiwara et al. '08

Significant (and unexpected) effect for threshold resummation!

More on resummation in top

From resummation, the following 2 loop logs can be predicted:

$$\sigma_{gg}(\beta) = \sigma_{gg}^{\text{Born}}(\beta) + \frac{\alpha_s}{4\pi}\sigma_{gg}^{(1)} + \left(\frac{\alpha_s}{4\pi}\right)^2\sigma_{gg}^{(2)} + \mathcal{O}(\alpha_s^3)$$

$$\sigma_{gg}^{(2)} = \sigma_{gg}^{Born}(\beta) \left(4608 \log^4 \beta + 1894.9 \log^3 \beta - 3.4811 \log^2 \beta + \mathcal{O}(\log \beta) \right)$$

Moch Uwer '08

It turns out the coefficient of $\ln^2(\beta)$ is of the form: $(-14306.9505 + 384C_3)$

$$-14306.9505 + 384C_3$$

where:

$$C_3 = 37.23$$

As extracted from NDE '89 and used in ALL resummation literature

$$C_3 = 34.88$$

The exact value just recently derived Czakon, AM '08

Therefore the coefficient of $ln^2(\beta)$ becomes -912.35

Note: the reason is pure numerics!

i.e. a change by a factor of 260!

More on resummation in top (2)

The changes discussed so far are purely due to numerics.

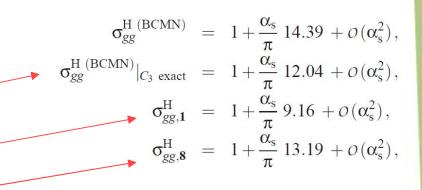
However: there is another modification compared to earlier literature

Exponentiation in Mellin space: (1) $f(N) = \int_0^1 \rho^{N-1} f(\rho) d\rho$. $\rho = 4m^2/s$ (2)

$$(3)\sigma_{ij}^{\mathrm{TOT}}(N) = \sigma_{ij,\mathbf{1}}(N) + \sigma_{ij,\mathbf{8}}(N)$$

$$(4)\sigma_{ij,\mathbf{I}}(N) = \sigma_{ij,\mathbf{I}}^{\mathrm{Born}}(N) \ \sigma_{ij,\mathbf{I}}^{\mathrm{H}} \ \Delta_{ij,\mathbf{I}}(N)$$

We were the first to point out σ^H depend on the color state of the heavy quark pair. We calculated the two coefficients.


Change in the gg Sudakov resummed

X-section: compare to Bonciani et al '98

C₃ numerics: -5%,

color singlet channel: -12%,

color octet channel: -3%,

Resummation - summary

These corrections are partially cancelled:

$$\sigma_{\text{RESUM}} = \sigma_{\text{FO}} + \sigma_{\text{SUDAKOV}} - \sigma_{\text{OVERLAP}}$$

That results in -(1-1.5)% shift. Compare to 4% (from NLL) and 0.8% (from beyond NLL).

Implications to previous studies:

- ✓ Formally these effects are beyond NLL; yet significant numerically
- ✓ Incorrect beyond NLL (only one such study Moch, Uwer '08)

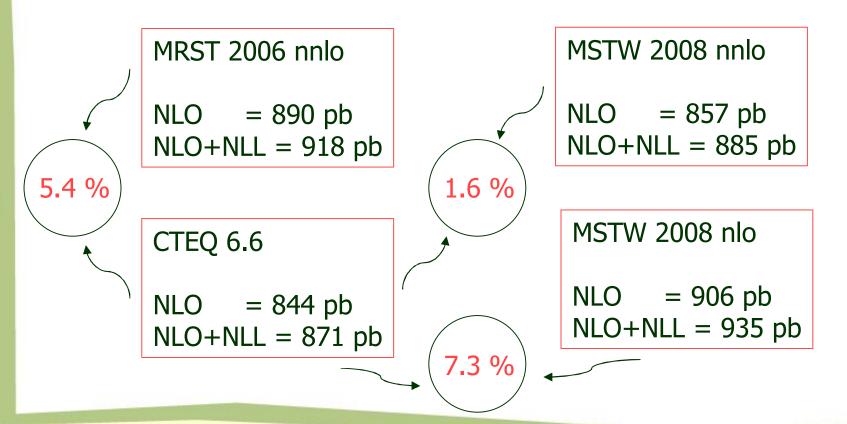
The big question is: why such sensitivity to the resummation?

And how relevant it is for the total cross section?

Work is in progress!

More numbers: newest PDF sets

Czakon, AM in progress


Comparison of central values for:

- \rightarrow m_{top}=172.4 GeV
- $\rightarrow \mu = m$
- correct exact hard matching coefficients.

 $\alpha_s(M_Z)$:

CTEQ 6.6: 0.118

MRST 2006 nnlo: 0.119 MSTW 2008 nnlo: 0.117 MSTW 2008 nlo: 0.120

Conclusions

The summary from the new analytic calculation/updated resummation:

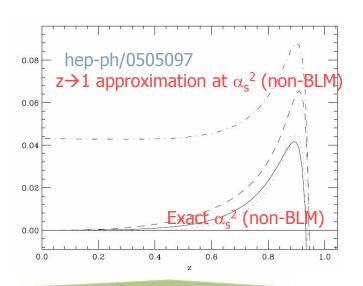
M. Czakon, A.M. (2008)

Conclusion #1: the earlier FO NLO calculations are of high quality 1%

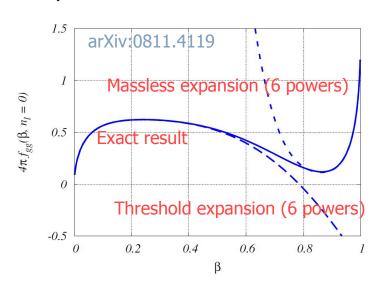
Conclusion #2: the NLL resummation affected by our work (25-30% effect):

qq → tt unchanged at NLO/NLL (but likely at NNLO/NNLL)

Question: How to determine the scale uncertainty?


❖ The new set MSTW 2008 NNLO is (much) closer to CTEQ6.6 (for top-pair)

New numbers will appear (in progress); trying to condense the field.


- Understanding true scale uncertainty requires full NNLO calculation!
- The appropriate observable is the total inclusive cross-section.
- Some NNLO terms can be obtained by truncating all-order resummation.
 is this a systematic approximation?

In general, this is a poor approximation to fixed order calculations:

Photon spectrum in $B \rightarrow s + \gamma$:

Top X-section: NLO correction

